

Present State

- Most high voltages are on to ~80% of operational values, except the entrance system.
- PAC (internal acceleration of ions prior to carbon foil) is -17.3kV on both units
 - -(eventually -21 kV)
- MCP (microchannel plate supply) is at:
 - 2300 (B)-2500V (A)
 - -(eventually 2800-3000 V)
- SSD is at full voltage (98V) on both units
- Instruments have been powered up 5x (A) and 4x (B)

Radiation Belt Passage: Penetrating Particles (B)

December 5, 2006 Event (A)

Final Subsystem to Commission: Entrance System

- Entrance system was operated in a limited manner for the first time in flight on Dec 8, 2006 (both units).
- High voltages that are involved in the Entrance System:
 - ESA (top-hat),
 - out-of ecliptic deflectors
 - proton/He reduced aperture channel ("S-ch")
- Only the ESA was operated during this test. ESA was placed at fixed voltages in steps to admit ions from 7 to 86 keV/e.

Solar wind conditions at time of test:

Real-time solar wind data from ACE was not available.

SOHO PM data became available, but not realtime.

Solar wind from SOHO/PM shows we were in a high speed stream (from a near equatorial coronal hole), when a shock arrived (Dec 8 at 0411 UT).

Possible associated solar events: 06 Dec 1847 X6.5 x-ray flare in AR0930 with a 3B optical flare at S06E63; est. travel time 33 hours.

(courtesy F.Ipavich, PM LeadCol)

STA PLASTIC test started about 1400 UT.

ESP and SEP EVENTS

 Busy Day for solar wind. CH high speed stream. Shock earlier in the day, about 10 hours before PLASTIC test, maybe (?) from a solar event. An associated ESP event may be present in Epam.

- (Thanks to Fred Ipavich, Murray Dryer, Ghee Fry --the HAFv.2 developer while at the Univ. of Alaska, and the USAF/AFWA forecasters for preliminary fast "analysis").
- AND there was an ongoing SEP event.

STEREO A Entrance System Test PHA DATA vs. E/Q (Composition)

Composition as "E-T Tracks"

- Each Element has its own track in Energy vs. Time-of-flight.
- Position on track depends on incident Energy. [Faster particles move to higher E and lower Time-of-flight.]
- For a fixed E/Q, different charge states of a given element will show as "clumps" in that species' E-T track.
- Now let's look at that data from STEREO A again...

- He+ may be from accelerated pickup ions (instrument points away from magnetosphere)
- S/W ions would tend to appear at a single TOF for a given E/Q
- The O, He and H ions have higher energies than expected from the S/W.

STEREO A - PLASTIC

- Background levels on PLASTIC "singles" rates due to SEP penetration were high, but did not interfere with coincidence composition measurements.
- Test was limited to high E/Q values, to provide an extra safety margin. Suprathermal ion populations observed (not bulk solar wind per se, possibly sw tails and local-shock acceleration of sw-like particles and of He+).
- PLASTIC A composition in the "solar wind sector" for this test case looks excellent.